翻訳と辞書
Words near each other
・ Darwiniothamnus alternifolius
・ Darwiniothamnus lancifolius
・ Darwiniothamnus tenuifolius
・ Darwinism
・ Darwinism (book)
・ Darwin International Guitar Festival
・ Darwin Island
・ Darwin Island (Antarctica)
・ Darwin IV
・ Darwin Jones
・ Darwin Jones (soccer)
・ Darwin Joston
・ Darwin K. Kyle
・ Darwin Kastle
・ Darwin L. Booher
Darwin Lagrangian
・ Darwin Laylo
・ Darwin machine
・ Darwin Machís
・ Darwin McCutcheon
・ Darwin Medal
・ Darwin Military Museum
・ Darwin Mobile Force
・ Darwin Mott
・ Darwin Mounds
・ Darwin Mountains
・ Darwin Nature Reserve
・ Darwin Nieves
・ Darwin Névé
・ Darwin Oliva


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Darwin Lagrangian : ウィキペディア英語版
Darwin Lagrangian
The Darwin Lagrangian (named after Charles Galton Darwin, grandson of the naturalist) describes the interaction to order \frac between two charged particles in a vacuum and is given by〔 pp. 596-598〕
: L = L_\text + L_\text,
where the free particle Lagrangian is
: L_\text = \frac m_1 v_1^2 + \frac m_1 v_1^4 + \frac m_2 v_2^2 + \frac m_2 v_2^4,
and the interaction Lagrangian is
: L_\text = L_\text + L_\text,
where the Coulomb interaction is
:L_\text = -\frac,
and the Darwin interaction is
: L_\text = \frac \frac \mathbf v_1 \cdot \left(1 + \mathbf \mathbf\right ) \cdot \mathbf v_2.
Here ''q''1 and ''q''2 are the charges on particles 1 and 2 respectively, ''m''1 and ''m''2 are the masses of the particles, v1 and v2 are the velocities of the particles, ''c'' is the speed of light, r is the vector between the two particles, and \hat is the unit vector in the direction of r.
The free Lagrangian is the Taylor expansion of free Lagrangian of two relativistic particles to second order in ''v''. The Darwin interaction term is due to one particle reacting to the magnetic field generated by the other particle. If higher-order terms in ''v''/''c'' are retained, then the field degrees of freedom must be taken into account, and the interaction can no longer be taken to be instantaneous between the particles. In that case retardation effects must be accounted for.
==Derivation of the Darwin interaction in a vacuum==
The relativistic interaction Lagrangian for a particle with charge q interacting with an electromagnetic field is〔 Jackson, pp. 580-581. 〕
: L_\text = -q\Phi + \mathbf u \cdot \mathbf A,
where u is the relativistic velocity of the particle. The first term on the right generates the Coulomb interaction. The second term generates the Darwin interaction.
The vector potential in the Coulomb gauge is described by〔 Jackson, p. 242. 〕 (Gaussian units)
: \nabla^2 \mathbf A - = - \mathbf J_t
where the transverse current J''t'' is the solenoidal current (see Helmholtz decomposition) generated by a second particle. The divergence of the transverse current is zero.
The current generated by the second particle is
: \mathbf J = q_2 \mathbf v_2 \delta \left( \mathbf r - \mathbf r_2 \right),
which has a Fourier transform
: \mathbf J\left( \mathbf k \right) \equiv \int d^3r \exp\left( -i\mathbf k \cdot \mathbf r \right) \mathbf J\left( \mathbf r \right) = q_2 \mathbf v_2 \exp\left( -i\mathbf k \cdot \mathbf r_2 \right).
The transverse component of the current is
:\mathbf J_t\left( \mathbf k \right) = q_2 \left(\mathbf 1 - \mathbf \mathbf \right ) \cdot \mathbf v_2 \exp\left( -i\mathbf k \cdot \mathbf r_2 \right).
It is easily verified that
:\mathbf k \cdot \mathbf J_t\left( \mathbf k \right) = 0,
which must be true if the divergence of the transverse current is zero. We see that
:\mathbf J_t\left( \mathbf k \right)
is the component of the Fourier transformed current perpendicular to k.
From the equation for the vector potential, the Fourier transform of the vector potential is
:
\mathbf A \left( \mathbf k \right)
= \left(\mathbf 1 - \mathbf \mathbf \right ) \cdot \mathbf v_2
\exp\left( -i\mathbf k \cdot \mathbf r_2 \right)

where we have kept only the lowest order term in v/c.
The inverse Fourier transform of the vector potential is
:\mathbf A \left( \mathbf r \right)
=\int \; \mathbf A \left( \mathbf k \right) \;
= \left(1 + \mathbf \mathbf\right ) \cdot \mathbf v_2
where
:\mathbf r = \mathbf r_1 - \mathbf r_2
(see Common integrals in quantum field theory ).
The Darwin interaction term in the Lagrangian is then
:: \mathbf v_1 \cdot
\left(1 + \mathbf \mathbf\right )
\cdot \mathbf v_2
|}
where again we kept only the lowest order term in v/c.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Darwin Lagrangian」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.